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Loss of caudal autotomy during ontogeny of Balkan Green Lizard,
Lacerta trilineata

Panayiotis Pafilis and Efstratios D. Valakos*

Section of Human and Animal Physiology, Department of Biology, University of Athens, Athens,
Greece

Tail loss is an effective antipredator strategy in many lizards. After loss the tail
continues to thrash vigorously and may distract predators away from the
escaping lizard. However, autotomy imposes energetic and survival costs (loss of
lipid reserves, reduction of reproductive output, impairment of locomotor
performance). Autotomy may have been lost when costs exceed benefits, while
a substantial reduction or full loss may occur during ontogeny. The Balkan green
lizard, Lacerta trilineata is a skilful sprinter despite its robust structure. Predation
was simulated in a total of 83 individuals (48 juveniles and 35 adults). All juveniles
shed their tail readily while none of the adults autotomized their tails. Post-
autotomy duration of movement and levels of involving metabolites in shed tails
were measured. No differences were found on comparison to other Greek
lacertids. These findings suggest that autotomic ability is lost ontogenetically in L.
trilineata while post-autotomy energetics seems to be a conservative character.

Keywords: tail loss; ontogeny; lacertids; post-autotomy energetics

Introduction

Caudal autotomy is an effective defensive tactic, common in lizards (Bellairs and

Bryant 1985), in which the animal sheds its tail when attacked by a predator (Arnold

1988; Cloudsley-Thompson 1994). Post-autotomy tail movement facilitates escape in

two ways: the shedding enables lizards to break away from predators that have

grasped them by the tail (Arnold 1984), and the vigorous movement of the detached

appendage distracts the predator from the escaping individual (Vitt et al. 1977;

Daniels et al. 1986) simultaneously increasing handling time of the shed tail and

providing enough time for a successful escape (Dial and Fitzpatrick 1983; Medel

et al. 1988).

Despite the immediate benefit of tail loss, this particular tactic comes with

many costs (Arnold 1988; McConnachie and Whiting 2003). The tail constitutes

the primary lipid reserve for many species and thus caudal autotomy reduces

energy stores (Daniels 1984; Doughty and Shine 1998; Doughty et al. 2003).

Furthermore, tailless individuals have been reported to show reduced social status

(Fox and Rostker 1982; Martin and Salvador 1995; Salvador et al. 1995) and

decreased running speed (Ballinger et al. 1979; Punzo 1982; Martin and Avery

1998; Cooper et al. 2004). Finally, tail loss has a strong impact on reproductive

output (Dial and Fitzpatrick 1981; Fox and McCoy 2000; Chapple et al. 2002),

and on territorial behaviour (Fox et al. 1990; Martin and Salvador 1993a, 1993b;

Salvador et al. 1996).
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Tail movement after autotomy is supported by anaerobic metabolism (Dial and

Fitzpatrick 1983). Anaerobiosis is widespread in reptiles (Bennett and Dawson 1972;

Gleeson and Bennett 1982; Lambrecht et al. 1991) and the main substrate is

glycogen, which is oxidized into lactic acid (Gleeson 1982; Gleeson and Dalessio

1989). Lactate concentration in tails after thrashing is much higher than in intact

tails (Dial and Fitzpatrick 1983) and thus lactate production can be used as an index

of thrashing activity (Meyer et al. 2002).

The balance between benefits and costs plays an important role in the

performance of autotomy. When cost exceeds its likely benefits, tail loss should be

avoided. Arnold (1984) maintains that absence or substantial reduction of tail loss is

a derived feature, which has been lost several times in several lineages. The most

obvious way is the vertebral fusion of the sections across the fracture plane (Arnold

1988).

In the course of a study of autotomy in Greek lacertids (Pafilis 2003) a

spectacular difference was noticed in the percentages of tail breakage between

juveniles and adults of the Balkan green lizard, Lacerta trilineata Bedriaga, 1886.

The fragmentary character of these observations and the small sample size needed an

experimental study. Hence, by inducing autotomy in lizards (Perez-Mellado et al.

1997), a confirmation of the initial observations was attempted, which suggested a

possible ontogenetical modification of the ability to shed the tail. Secondly, variation

in post-autotomy tail activity of L. trilineata was compared to other Greek lacertids

in order to detect any divergences due to alterations (if any) in tail loss ability.

Thirdly, previous conclusions concerning the conservative character of postautot-

omy energetics (Pafilis et al. 2005) were tested.

Materials and methods

Study species

The Balkan green lizard (Lacerta trilineata) is distributed in the Balkan Peninsula

and Asiatic Turkey and is also present on many Aegean and Ionian Islands, and on

Crete. Specimens used in this study (n583) were collected in northern Greece

(Pindos and Paiko mountains) and in Peloponnese (Mt Ziria).

Lacerta trilineata is a robust lizard with an average snout to vent length (SVL) of

over 16 cm, and tail twice the body length or more, ranking as the biggest lacertid in

the Balkan Peninsula. The lizards become sexually mature in their second spring

(Nettmann and Rykena 1984). For the purposes of these experiments lizards with

SVL smaller than 8 cm were considered juveniles.

All the animals were collected in the wild during the non-reproductive period

(October–November), and in accordance with Greek National Law (Presidential

Decree 67/81). They were subsequently held at the laboratory facilities of the

Biology Department at the University of Athens. Animals were housed singly in

glass terraria (90 cm650 cm650 cm) with a substratum of sand and stones as hiding

places. The lizards were held at 25uC under a controlled photoperiod (12 h L: 12 h

D) using fluorescent lights for a period of at least 4 weeks before the experiments

took place in order allow adjustment to conditions in captivity. Additional

incandescent lamps (60 W) allowed animals to thermoregulate behaviourally for 8 h

per day. Animals had access to water ad libitum and were fed every other day with
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mealworms, except for the last two days before an experiment, when they did not

receive food.

Additional to the predation simulation experiment, the tails in 138 museum

specimens (Herpetological Collection of the A. Koenig Zoological Research Institute

and Museum, Bonn) were examined. When a broken or regenerated tail was

detected, its presence was recorded and both SVL and TL of the lizard were

measured (specimen codes available upon request from the authors).

Predation simulation

Since autotomy is often temperature dependent (Brattstrom 1965; Bustard 1968;
Daniels 1984) each animal was allowed to attain its preferred body temperature

for approximately 1 h before each experimental trial. A specially outfitted

terrarium (1 m620 cm625 cm) providing a temperature gradient ranging was

used. The gradient ranged from 17uC to 55uC, with two incandescent heating

lamps (100 W and 60 W) at one end, and two ice bags at the other (Van Damme

et al. 1986).

Predation simulation was carried out according to the protocol designed by

Perez-Mellado et al. (1997), which closely resembles a predator’s attack. The lizards

were placed in a terrarium (50 cm620 cm625 cm) covered with a rough cork mat,

which allowed them to maintain good traction. To simulate the bite of a predator, a

pair of calipers was used (the diameter of the tail in the position of pressure

application was measured and the apparatus was then closed around it till the initial
movement was halved) to grasp the tail a distance of 20 mm from the cloaca. Each

trial lasted a maximum of 15 s and if by that time autotomy had not occurred, the

lizard was returned to its terrarium. Once a tail was shed, the time from the moment

of autotomy to cessation of all movement was measured (‘‘exhausted’’ tails) and it

was then placed in a container with liquid N2. In an alternative treatment group, tails

were placed immediately after shedding and without any movement, into liquid N2 in

order to determine rapidly baseline concentrations of lactate and other components

at time zero (‘‘resting tails’’).

Tissue lactate determination

To ensure that the tail would remain frozen during muscle tissue removal (and thus
metabolites would be preserved), a special round aluminum table was used,

immersed by its shaft in liquid N2 (see Pafilis et al. 2005).

Muscle tissue (approx. 150 mg) was homogenized (1:3 w/v) with 10% ice-cold

perchloric acid in a cold pestle on ice. The homogenate was centrifuged at 4uC and
5000 rpm for 10 min. The supernatant was then neutralized with 0.5 M Tris/0.5 M

KOH and subsequently centrifuged at 4uC and 10,000 rpm for 10 min. The pellet was

discarded and the supernatant was used for the estimation of total lactate

concentration according to the method described by Hohorst (1965). Lactate

concentration was expressed as mg lactate/mg tissue.

Tissue lipid determination

Extraction of total lipids was performed by homogenizing muscle tissue (30–40 mg)

with 1.5 ml of a mixture containing two volumes of chloroform and one volume of
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absolute methanol. The homogenate was then centrifuged at 4uC and 3000 rpm for
10 min. The pellet was used for protein analysis (see below), and the supernatant was

used for the determination of total lipid concentration, using an appropriate kit

(Chromatest) according to the method described by Alexis et al. (1985). A mixture of

olive oil and corn oil (2:1 v/v) was used as the standard.

Tissue protein determination

Determination of total protein levels was performed using the Biuret method (Layne

1957). Briefly, the pellet of centrifugation obtained from the lipid analysis (see

above) was dissolved with 0.5 ml of 0.1N NaOH and incubated at 37uC for 30 min

with occasional vortexing. Fifty ml of the sample was diluted with 950 ml of H20, and
4 ml of the Biuret Reagent were added. The mixture was incubated for 30 min at

room temperature and the absorbance was read at 550 nm using a spectro-

photometer (Novaspec II, Pharmacia Biotech). Bovine serum albumin (0.5 mg/ml–

10mg/ml) was used as a standard.

Statistical analysis

The non-parametric Mann–Whitney U test was used to compare the differences in

the physiological traits between resting and exhausted tails. Differences in the

various traits between the different species were examined with analysis of variance

(ANOVA). This analysis was made using the PDSINGLE program from PDAP
software (PDAP version 6.0, Garland et al. 2002), which performs conventional

analysis of variance on traits among different species that are related with star

phylogeny (Garland et al. 1993, 1997; Brashares et al. 2000).

Results

Predation simulation

In all trials 100% of juveniles shed their tail readily. In contrast, none of the adults
performed autotomy (0%). While tail loss occurred in juveniles during the first 5 s, in

adults no autotomy was recorded even after 15 s. Instead, adult lizards adopted an

active attitude against the calipers (biting or coiling around it).

As for museum specimens, in 138 specimens, 15 broken tails (10.86%) were found

to have subsequently been regenerated. From these 15 individuals only 3 were

juveniles (SVL less than 8 cm). The ratio tail length/SVL was 2.1¡0.34 cm for lizards

with intact tails (range51.16–2.63 cm) while for adult individuals with regenerated

tails it was 1.38¡0.25 cm and for juveniles with regenerated tails it was
0.42¡0.12 cm. These data demonstrate that in the case of the adult lizards with

regenerated tails, autotomy had occurred when they were juveniles since regenera-

tion was complete.

Post-autotomy tail movement

Average duration of tail thrashing was 5.49 min (range52.38–9.4 min, Table 1). No

statistically significant difference (ANOVA: F1,552.34, P.0.05) was found when the

duration of post-autotomy tail trashing for L. trilineata was compared to the values

for other lacertids (Figure 2 in Pafilis et al. 2005).
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Lactate accumulation

Accumulation of lactate in exhausted tails was higher than in resting tails (Table 1)

(Mann–Whitney U test, U52.00 P,0.05). No significant difference (ANOVA:

F1,550.89, P.0.05) between L. trilineata and other lacertids (Table 2 in Pafilis et al.

2005) was detected.

Lipid and protein concentration

The concentration of proteins and lipids did not differ between exhausted and resting
tails (proteins: Mann–Whitney U test, U543.5, P.0.05; lipids: U56.0, P.0.05)

(Table 1). Compared to other lacertids (Table 3 in Pafilis et al. 2005), no difference

was found for both lipids (ANOVA: F1,553.51, P.0.05) and proteins (ANOVA:

F1,550.986, P.0.05).

Discussion

According to the results of this study, adults of L. trilineata are not capable of tail

loss, in contrast to juveniles. In all cases where predation simulation was applied,

autotomy occurred in younger individuals while none of the adults shed their tail.
These findings support the idea that tail-shedding ability has been lost ontogeneti-

cally. Ease of autotomy has been reported to decrease in the case of insular species

subjected to low predation (Arnold 1988, and references therein; Perez-Mellado et al.

1997). Previous authors have pointed out that the tendency for restriction or loss of

autotomy in lizards is attributed to ontogenetical changes.

Being an adaptive feature (Gould 1983; Arnold 1988), autotomy is amenable to

both evolutionary and ecological effects. It is probable that the reason for autotomy

loss in L. trilineata is recent, since the phylogenetic history of European lacertids is

well known (Arnold 1973, 1989, 1993; Harris et al. 1998). The causes for this

uncommon (among lacertids) ontogenetical change must be sought in the specific

characteristics of L. trilineata. Thus, energy use (as shaped by the greater longevity

and massive clutches of the species), the large body size of adults, and the
locomotory characteristics must be the more important reasons.

Since many lizards store fat in their tails, loss of the tail involves loss of energy

reserves, which may have severe consequences for the reproductive potential of the

Table 1. Autotomy features for L. trilineata exhausted tails and resting tails: time of

postautotomy tail movement (min), lactate, lipid and protein concentrations (in mg/g tissue).

Time Lactate Lipid Protein

Exhausted tails

5.49¡2.05; 45;

(2.38–9.46)

1.93¡0.35; 45;

(1.37–2.88)

163.6¡32.8; 13;

(102.6–204.85)

282.1¡41.8; 38;

(216.6–359.8)

Resting tails _

0.89¡0.04; 3;

(0.85–0.93)

191.9¡7.6; 3;

(186.5–197.3)

282.5¡25.29; 3

(260.9–310.5)

Note: N: number of individuals; mean: mg/g tissue except from time where the unit is minute;

SD: standard deviation; numbers in parentheses: range. All values are given as mean ¡SD; N;

(range).
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individual (Dial and Fitzpatrick 1981; Fox and McCoy 2000; Chapple et al. 2002).

Males use energy in social and territorial behaviour while females exploit fat reserves

to produce eggs (Vitt and Cooper 1986). Karasov and Anderson (1984) reported that

90% of the energy necessary for egg production is derived from stored lipids and not

from daily food intake.

Females of L. trilineata have a high reproductive output, laying seven to 14 eggs,

while clutch sizes of over 20 eggs are not uncommon (Arnold and Ovenden 2004). Egg

size is 14–22 mm width and 9–14 mm height, and SVL of the offspring varies from 3.5

to 5 cm (Arnold and Ovenden 2004). In order to produce such massive clutches,

comprising numerous large eggs, L. trilineata females cannot afford to shed the tail, so

valuable in energy terms. Loss of the tail, especially during the breeding season, could

cause females to produce smaller clutches of eggs, or no eggs at all. Hence restriction or

loss of ability in this case offsets the high costs of caudal autotomy.

Moreover, energy stored in the tail is crucial for survival during unfavourable

periods of the year (Avery 1974; Daniels 1984; Vitt and Cooper 1986). Lacerta

trilineata, like many other lizards, hibernates (Nettmann and Rykena 1984),

especially mountainous populations like those studied here. Loss of caudal lipids

has a negative effect on the ability of lizards to survive (Avery 1970; Jameson 1974;

Bauwens 1981). Given the longevity of L. trilineata, 10–20 years according to

Nettmann and Ryhena (1984), hibernation is a repeated and important feature of its

life cycle. Autotomy reduction may be the solution for securing precious energy

reserves. This idea is further supported by the fact that only large species (SVL over

15 cm) show great longevities (20 years for L. lepida Daudin, 1802, around 17 years

for Gallotia simonyi (Steindachner, 1889)) while the majority of lacertids have shorter

lives (two to seven years) (Arnold and Ovenden 2004).

Tail loss may decrease locomotor performance in lizards (Martin and Avery

1998; Chapple and Swain 2002). Lacerta trilineata is a skilful runner and climber

(Nettmann and Rykena 1984) and the tail has an active (Vitt et al. 1977) role. Any

possible modifications in locomotory potential, a crucial fitness trait (Huey and

Pianka 1981), would have a serious impact on the overall performance of the lizard.

Speed has been correlated with size and growth in lizards (Van Damme et al.

1998; Aerts et al. 2000). The small size of L. trilineata juveniles prevents them from

escaping by flight, an important element for living in open areas where predation

pressure is intense (Arnold 1987; Mayer et al. 1990). In order to compensate for high

predation risk, young individuals of L. trilineata are more prone to caudal autotomy,

like juveniles of other species (Cooke 1979).

Antipredatory tactics may change ontogenetically (Greene 1988). In some

iguanids, skinks and teids, for instance, juveniles are able to shed the tail readily

while as adults they lack the ability, or show reduced performance since they lose

fracture planes during ontogeny. Ontogenetic loss of autotomy occurs more often in

large species that can display more active defence (Arnold 1984). Adult individuals

of L. trilineata may be considered large among European lacertids, a small-body size

family in general. It is not unusual to find males of a total length of almost 0.5 m in

mainland Greece. Malkmus (1982) reported that the closely related L. lepida, the

largest lacertid in Europe, with SVL up to 20 cm, rather than fleeing, often turns

against the predator, trying to bite it. That same behaviour was observed in the

laboratory predation simulation: adult individuals either turned and attempted to

bite the caliper or they remained still. It seems that tail loss ability tends to weaken
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ontogenetically in L. trilineata, finally to be replaced by other defence means (e.g.

biting and clawing).

Examination of regenerated tails in museum specimens provides indicative

information (see Arnold (1984) for collecting bias). In respect of this, museum

measurements were used as an additional element, though regenerated tails may be the

result of accident or predatory attack. The low percentage (10.86%) found in individuals

of L. trilineata gave the same impression of restricted autotomy. Tails, in cases where tail

shedding had occurred, were fully regenerated (most of them had tails twice the length of

the body), indicating that tail loss had occurred when the lizards were juvenile.

Three possible biases that may alter autotomic performance under the laboratory

conditions must be stressed. First, captive lacertids tend to tolerate a degree of

handling while the same stimulus would cause an immediate tail shedding in the wild

(Arnold 1984). Lizards that were tested were kept in captivity for substantial periods

of time and hence might have lost the tendency to react instantaneously. Second, tail

shedding occurs in lacertids readily if the predator grasps the escaping animal but if

the tail is pulled or twisted by the predator then it can be detached only with

difficulty (Arnold 1984). In the experimental procedure followed, lizards were first

placed carefully in the trial terrarium, and then pressure was applied to the tail of the

motionless individual. Furthermore, in most cases, adults, in their effort to bite the

calliper, coiled their tail around it. Third, the tension of the simulated stimuli might

not be sufficient to reach the threshold for autotomy. It is possible that the strength

of the stimulus applied in the experiments was minor in comparison to the pressures

that lizards experience in the wild.

Since only juveniles shed the tail in response to predation simulation, comparison

of postautotomy movement and physiological traits refer only to this category.

Average duration of tail movement for other species varies from 0.8 min (Eumeces

fasciatus (L., 1758), Vitt and Copper 1986) to 5–5.2 min (Scincella lateralis (Say, 1823),

Dial and Fitzpatrick 1983; Hemidactylus mabouia (Moreau de Jonnès, 1818), Meyer et

al. 2002). As far as lacertids are concerned, times recorded for L. trilineata are within

the range reported for other Greek species (6–8 min, Pafilis et al. 2005) while appearing

longer than the values reported for western Mediterranean species (Perez-Mellado et

al. 1997). Differences from previous studies may be attributed to differences in

methodology, for instance the definition of ‘‘resting’’ tails, and to small sample sizes.

Average lactate concentrations for exhausted tails are in accordance with

previous studies (Bennett and Licht 1972, and references therein; Meyer et al. 2002;

Pafilis et al. 2005). This fact was more or less predictable since lactic acid is generally

believed to be the cause of movement cessation (Gleeson 1996). Lipid and protein

levels were similar to the respective values in other lacertids (Pafilis et al. 2005). In

general, concentrations did not differ before and after tail thrashing (Table 1).

Metabolism of those macromolecules is a time-consuming process and thus cannot

provide the necessary amount of energy for tail movement after shedding.

An obvious discrepancy in the evaluation and interpretation of the present

results concerning physiological metabolites is related to the lack of a negative

control (no data for tails of adult individuals). As mentioned above, none of the

experimental trials in adults led to caudal shedding and thus no tissue was available

for biochemical analysis. It was decided not to remove the tail manually, since

scientific work involving cruelty to animals is not acceptable (see Association for the

Study of Animal Behaviour 2006).
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In summary, caudal autotomy in L. trilineata is believed to have been lost

ontogenetically. Fully-grown adults are capable of alternative antipredatory tactics

that render the costly strategy of tail loss redundant. Moreover, the costs of

autotomy become intolerable for individuals that have to invest in reproduction,

territoriality and augmented locomotory challenges. The present results reinforce the

prediction that postautotomy energetics is a conservative character, at least among

the members of the same family (Pafilis et al. 2005). The examination of autotomy in

similar species (e.g. L. lepida) and the morphological approach to the effect (fusion

of vertebrae) would provide essential conclusions.
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